ASYMPTOTIC ANALYSIS OF THE BEHAVIOR
OF AN ELASTIC BAR UNDER APERIODIC INTENSIVE LOADING

V. M. Kornev UDC 624.074.4

It is established that when aperiodic loads of large intensity act on an elastic bar, the higher
modes of stability loss have the highest rates of growth of deflections. A method is indi-
cated for determining the numbers of these modes, when the effect of the longitudinal vibra~-
tions on the transverse vibrations is taken into account and when it is not taken into account.
A comparison of the results obtained with results of other authors [1-7] is presented.

1. Statement of the Problem

The system of equations which takes into account the mutual influence of the longitudinal and trans-
verse vibrations of an inhomogeneous bar has the form

(B, 1), 2o -+ (EFury 0,90 -+ 0Fw, — 1* (z, ) 4.1)

(EFuax)’x - PFu;tt a 2)

Here, w and u are the normal and longitudinal displacements of the bar; x and t are the longitudinal
coordinate and the time; E = E(x) is Young's modulus; I = I(x) and F = F(x) are the flexural rigidity and the
cross-sectional area; p = p(x) is the density of the material. It is assumed that E(x), I(x), F(x), and p(x) are
functions which slowly vary along the length of the wave of loss of stability; while f*(x, t} is a function
which is determined by the initial disturbances or imperfections.

We consider a pin-jointed bar of length /,(0 = x = {j). Let an aperiodic load N(0, t), whose minimum
value min N(0, t) = Ny considerably exceeds the Euler load Py for the bar, be applied to the bar at rest, for
t = 0, at the section x= 0. Thus, we study the behavior of the bar under intensive loading Ny/Pe = n? > 1.
The use of asymptotic methods of investigation appears to be natural for problems of this kind.

We assume for the time being that the wave process in the propagation of the longitudinal disturbances
can be neglected, i.e., the function N(x, t) is given, and this function is sufficiently smooth. Then, Eq. (1.1)
is rewritten in the form

(BT )z + (Nw,e) o -+ pFw e = [ (2,8) O<z<<h) (1.3)
The initial and boundary conditions for Eq. (1.3) are
w=w; =0 (=0 w=w,,=0 @@=015 (1.4)
Before proceeding to an asymptotic analysis of the problem (1.3), {1.4), we introduce the following
dimensionless parameters and estimate the order of the individual terms, with Ny/Pg = n® > 1
. 1
*1 E¥\1. 1
m=zlly, =2, = ('P_*> ., E* =l_f.S E (z)dz,
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Here, c¢* is the average velocity. In the following the index 1 of the new variables is omitted through-
out. The relationship (1.3) in terms of the new variables, if we group the second-degree terms, assumes
the form

Wyxnee + N8 (2, OWiae + b (@)W,0 + B = f (z, ) (1.5)

Nlig? E*ly? Lodf* (x, t .
Taln ) =5, b@) =520 E, (@=L pc.qy

Here, n > 1 is a large parameter which characterizes the intensity of loading, r = r(x) is the radius
of gyration of the cross section of the bar, and B denotes the second-degree terms of the equation.
The initial and boundary conditions retain the form (1.4). -

We estimate the order of the individual terms in (1.5), following [1]. We put
afz, ) =¢c, b{a) =cy, B=0

where ¢y and ¢, are certain constants. Then, the solution of the homogeneous equation (1.5) can be found
in the form

w¥ = A exp (initer + MPfqe?) .e)

if we single out one degree of freedom of the system with distributed parameters. We choose the degree of
freedom which corresponds to the maximum of the exponential index (see [1]). Consequently

o' =01/ 2, oo’ = ¢y / 4e, €.7)

The constants nuy and n’ug characterize the variability of the solution with respect to the coordinates
x and t. We note that the solution (1.6) has a different order of the derivatives with respect to x and t rela-
tive to p ‘

= 190 (w*), ?.‘;% = Y0 (w*) (=12..) ' (1.8)

olw# .
& axj .

2. Asymptotic Analysis of a System with One

Degree of Freedom

Following the commonly used approaches to asymptotic integration of both ordinary and partial dif-
ferential equations {8, 9], we seek the solution of the homogeneous equation (1.5}, with variable, but weakly
varying coefficients, in the form

w=Q (¢t z, MW (z, t, 1) @1)

W =z (z,t,m)exp S i, (z, t) dx
t

Q = C1Z (t, 2, m) exp § [11hys (¢, 2) - My (¢, 2)] dt

0

Here, nuy and n’usy + nuy are the functions characterizing the variability of the solution with respect
to x and t, respectively, while z and Z are slowly varying functions, and C; is an arbitrary constant. For
the function yy (x, t) the basic variable is x, while for the functions ps,(t, x) and py (t, x) the basic variable is
t [see (1.6)1, i.e.,

o1 f=1,2 il 2-2)
PYY Ly U 12)s 7

% g (=1234 k=12
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The order of variability of the solution (2.1) with respect to x and t for an inhomogeneous bar under
aperiodic intensive loading

&w

o0z

. . ] 3
=n0@), 28 =w0w@), 1=12..., 131 (23)

agrees with the variability of the solution with respect to x or t for a homogeneous bar under constant load-
ing [see (1.8)].

The asymptotic form of the solution (2.1) is substituted into the homogeneous equation (1.5). We use
the inequalities (2.2) and the relations (2.3). We group the terms with the corresponding powers of the large
parameter 7. For example, comparing the terms having the highest power of the large parameter, i.e.,
those having !, we obtain the following equation:

ez Ot b (e’ =0 2.4)

The relation (2.4) contains two unknown functions yy and ug. Just as in the derivation of the solution
of an equation with constant coefficients, we stipulate that the function y;(x, t), for arbitrary x and t, results
in the maximum of the expression

wt —a(z, Hpd
Then

W* =", a(z, t) (2.5)
From (2.4), we have

Poo? = a® (z, 1) [ 4b (z) (2.6)

It is easy to see that (2.5) and (2.6) very much remind one of (1.7).
We now proceed to determine the slowly varying function z(x, t, n) which characterizes the variation
of the amplitude of the mode of loss of stability of the bar in the process of motion. We put

z(z, 6 M) =20 (2, ) + 072 (@, ) T 070 (2, 1) 4 . 2.7)

In this section, we neglect all terms except the first.

Equation (2.5) determines the mode of loss of stability which increases with the greatest rapidity.
For this mode of loss of stability the equation

W,xx:;cx + 712P12 (17 t)chx + B =0 (2.8)
holds.
Here, B' are the lower terms of the equation.

The boundary conditions are not set up for this equation. We only stipulate that the function be an al-
most periodic function ’

x

W (x,£,m) = 2o (x, 1) exp{ in S Wy (2,1) dr} ‘ (2.9)

The second and fourth derivatives of the function W (2.9) are substituted into (2.8), the terms with r*
and n® are equated, and two equations are obtained. The first of them is satisfied identically, while the
second after transformations assumes the form

‘Zi"___i”lxd . (2.10)

29 2

Equation (2.10) is valid if in (2.8), we neglect the lower terms. This equation, when t is a parameter,
is integrated by quadrature

x
Injzy|=—5-{ "% do (2.11)
. 1]
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Thus, the distribution of amplitudes of the chosen mode of loss of stability appears as if depending on
the local conditions of loading of the elastic construction: the local rigidity and the local intensity of load-
ing. If g = py(x, t), then the distribution of amplitudes of the rapidly oscillating function W(x, t, n) depends
on the x coordinate and the instant of time t.

Now, in the solution (2.1) it remains for us to determine the factor Z;(x, t, n), which characterizes
the variation of the growth rate of the mode of loss of stability already determined, from point to point dur-
ing the process of motion. The system with distributed parameters is replaced by a system with one de-
gree of freedom [see (2.9) and (2.1)].

The expression (2.1} is substituted into the homogeneous equation {1.5)
b(t, 2)Q" — n'a (¢, 2)Q + B* = 0. (2.12)

Here, bi{t, x) and a(t, x) are sufficiently smooth functions, n > 1, and B* denotes second~degree terms.

Equation (2.12) is an equation of rank 2 (see [8]). After the usual caleulations, if Z(t, x, n) is repre-
sented in the form of an asymptotic series

Z(t,z,m) =Z,(t2) + 0% (t, 1) + 02, (¢, ) + ...

for Qt, x, n) the relationship

t
0, z,m) = CI{Z0 (t, z) exp S N2, (4 x)dE .. . }, Zy=(b]a)h (2.13)
. ‘

is valid.
The expression (2.14) applies for Zy, when B* = 0 in (2.12).

Finally, after renotation, we obtain the expression (2.1) in which the first term behind the integral
sign characterizes the rapid oscillation of the solution along the longitudinal coordinate (x is the basic
variable} while the second term characterizes the rate of growth of the deflection (f is the basic variable);
the factors z(x, t, n) and Zy(t, x, ), respectively characterize the distribution of amplitudes of the mode
of loss of stability and the intensity of growth of this mode, dependent on the time and the longitudinal ¢o-
ordinate. The constant C; is chosen from the nonhomogeneous equation when in the right side we have
singled out a given form of loss of stability.

We note certain special features of the solution obtained for w [see (2.1)]. The function w, generally
speaking, does not satisfy the initial and boundary conditions (1.4) of the problem under consideration. The
initial conditions are not satisfied, since components corresponding to the exponential function with a nega~
tive index with respect to time and a function bounded with respect to n are absent from w. However, for
n >»>1 and large t these components have a secondary importance. The boundary conditions from (1.4) are
not satisfied, because the function yy is determined from (2.5). We recall that the solution w is the basic
part of the solution of a system with one degree of freedom. In Section 3, where the system with distributed
parameters is replaced by a system with several degrees of freedom, a more exact solution of the problem
(1.5), (1.4) is presented. This solution, in contrast to (2.1), satisfies the boundary conditions. The solution
(2.1) obtained here correctly reflects the quantitative pattern of the phenomenon: the fully determined
mode of loss of stability changes most rapidly, while the mode itself depends on the time.

3. Asymptotic Analysis of a System with Several

Degrees of Freedom

The expression (2.1) obtained above for the basic part of the solution of a system with one degree of
freedom, allows us to proceed to the approximation of a system with distributed parameters by a system
with several degrees of freedom, and namely, the number of sign changes of the oscillating component of
the solution

sin {7] ’j. u, {z, £°) d:c}

at a fixed instant t° indicates the number in m(t®) of the mode of loss of stability which most intensively grows
at t = t°. When t is varied, we obtain a certain function mf(t).
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Let the function m(t) for 0 =t = t; {t is a certain constant) run through the integer values m;, m,,
.., m {k = 1). These integer values are the numbers of the modes of loss of stability which most inten-
sively grow at certain instances of time. Therefore, for the approximation of the system with distributed
parameters, we choose modes of loss of stability Wy, (x), and the solution of the problem (1.5), (1.4) is
represented in the form

k
We= D) G () Wi (), m=m(j) :>1) (3.1)

=1
Here, m is an integer function of an integer argument j, i.e., m = mf(j) for j =1, 2, ..., k, and W(x)
are certain averaged modes of loss of stability. These modes are asymptotic representations of solutions

of the following problem concerned with eigenfunctions and eigenvalues (we recall that A~ n? is a large
parameter):

W,_\'xxx + Aa* (‘Z) W,xx + B° = Os W = W,rx =0 (z=0.1) 3 -2)

ty
a* (z) = -;O—S a(z, t)dt
0

Here, B° denotes the lower terms of the equation. The boundary conditions of the problem (3.2) may
have in fact a more complex form.

After the selection of the appropriate degrees of freedom (modes of loss of stability), we proceed to
the determination of the amplitudes q,. The expression (3.1) is substituted into Eq. (1.5) and the initial
conditions (1.4); the Bubnov—Galerkin procedure is used. For 4> we obtain the Cauchy problem for the
following systems of ordinary differential equations

k
qm”—'n‘}Z CimQi + B = s Qm(O)"—‘QmI]Ol =0

i==1

Congn > 6y fOU iz=m, m=m(j) G i=142,...,k (3.3)

Here, Bm denotes second-degree terms; their relative order is not greater than two, i.e., By ~ nz
{see (2.2)]. The second-degree terms have such an order when the character of loading and the stiffness
characteristics of the bar vary but a little. In the system (3.3) each m equation contains within the higher
terms only one derivative of the second order g m"' This is a consequence of the simple boundary conditions
of the problem (3.2). If the boundary conditions for the equation of the problem (3.2) differ from the con-
ditions
W = W,xx =0 ‘or W,v = W,x.\'x =0 (=01 & .4)

then, a system which is analogous to (3.3) has the form

k k _
D i@ — 0 D) Cimi + By = fmy @ (0) = g5 (0) = 0, m = m (j)
i=1 i=1

(i,5=1,2,....k) (355)
Cm > Cim for . E5 M Cm S>Cim for iskm, m>>1

We note that the system (3.5) is transformed into a decoupled system, when a homogeneous bar under
constant load is being considered, if the boundary conditions have the form (3.4).

The systems (3.3) and (3.5) with variable coefficients contain the natural large parameter 7. The
solution of the homogeneous system of ordinary differential equations (3.3) or (3.5) of rank 2 [8] (the high-
est power of the large parameter is 4) is sought in the form of an asymptotic series. For example, for
one of the particular solutions of these homogeneous systems the representation

t
Qm = Z,, exp 5 [Magm () + Mo OV 8, Zoy = Zoo (8) + 0 2y () 4. . (3.6)
o

is valid.
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In deriving the solution of the nonhomogeneous system of equations, we use the general method of
varying the arbitrary constants.

The representation of the solution of the system (3.4) in the form (3.6) is valid, if for a variation of ¢
in the time interval being considered (0 =t =< ty) not a single root of the "characteristic polynomial™ cor-
responding to the system (3.4) becomes zero, or the intensity of loading does not vary very much. The coin-
ciding real roots of the characteristic polynomial corresponding to (3.3) do not give rise to complications,
since the matrix ¢ = ||cjpy || has simple elementary divisors, and, consequently, the form of the asymptotic
representation of the solution (3.6) is retained (see [8]). Not one of the roots of the characteristic poly-
nomial corresponding to (3-3) becomes zero, if the functions ¢y do not change sign, i.e., Cppy(t) > 0 for
0=t =t

For a considerable change in the intensity of loading ¢y, tim) = 0 for 0 = tfm = ty. In this case,
we have to bear in mind the turning points (a certain one of the functions q,, may be transformed from an
exponentially increasing function into an oscillating function; for example, the exponential index is greater
than zero for t < t;knm, the exponential index is a purely imaginary function for t > t}, ). In the presence
of turning points the problem of constructing "through" asymptotic forms arises.

Example. We consider a homogeneous bar under nonuniform longitudinal loading. Let in (1.5)
a=2(l +ur)? b=by=coist, a=rconst, B=00<z<1)

Then in the expression (2,1) the functions piq, feg, zg, and Z; have the form

_ _2(1 4ax) = 1 — M
=1 4 0z, py= 2 7 Fo = (4 4 azy2 % (1 +ax)’s

It is obvious that, dependent on the quantity o, the oscillation of the solution with respect to the longi-
tudinal coordinate, the rate of growth of the deflection and the distribution of amplitudes can vary substan-
tially.

4. Buckling of a Inhomogeneous Bar under an Impact

{"One" Degree of Freedom)

In the preceding two sections, We studied the behavior of the bar with the assumption that the velocity
of propagation of the disturbance along the x axis is infinite. We drop this assumption. Letatt=0an in-
tensive load N(0, t) be applied to bar at the sectionx =0, i.e.,

N=N(@,8, z=0, t>0 4.1)

Here, N(0, t) is a sufficiently smooth function.

The problems (1.2) and (4.1) are problems concerned with the propagation of the boundary effects (0 <
x = 1). The reflection from the support x =1 for the time being is not considered. It is assumed that the
solution of this problem for the wave equation (1.2) has already been obtained by some method. Thus, we
know the compressive force Ny(x, t) and we know the velocity c(t) (c(x)), with which the front of the force is
displaced along the bar :

t
No(z, t) = N (z, t) @<L()), Ny(z, ) =0 =10 I(t) = j ety ds (4.2)

1]

Here, c is a dimensionless velocity for an inhomogeneous bar.

We note that the function Ny (x, t) has a complicated form; for x =/, this function is discontinuous:
Nol=g,t) = Ny +&,t) (& > 0is a small positive quantity).

As we know, the bending disturbances given by Eq. (1.1) for x > {(t) are not significant. In addition,
with a more exact formulation of the problem we obtain equations of the type of the dynamic equations of
the Timoshenko beam. From these equations it follows that the velocity of propagation of the bending dis-
turbances c  (t) is finite and less than c(t) for any instant of time le, {t) < ct)]. Therefore, the study of the
equation '
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Worxx + 7]2“ (Z: t) W, + b (Z) Wit +B = f(xi t) (4:3)

is conducted on a variable interval [4], 0 = x < [{t), just as in [5] (for notation see Section 1). The initial
and boundary conditions for Eq. (4.3) are

w=w, =0 (=0 w—w, =0 E=0) w=wy,=0 (=) (4.4)
Let alx, t) and b(x) be functions which only slightly vary along the wave of loss of stability.
We introduce the coordinate transformation [5]

0

Here, 7 is the true time of action of the compressive force of high intensity.

Equation (4.3) in terms of the new variables preserves its form (t is replaced by 7), if we neglect
the second-degree terms. An estimate of these second-degree terms for a homogeneous bar is presented
in Section 1 of [5]. In the case being considered, the principal complications in their estimation do not
arise for an inhomogeneous bar with smoothly varying rigidity. The second-degree terms can be neglected,
if max r(x)/min L(x) <1 (here x, r and L are quantities with dimensions; L is the length of the wave of loss
of stability ' i

The solution of the transformed equation (4.3) is found in the form

w=Q (1,2, D)W (z, T, 1) (4.6)

W =z, tyexp [ inm (@, 9dz, Q= CiZo(r, Zyexp | [ [nipan(r, ) +
[} 1]
+ M (5, 2)] e} CoZy (7, @) exp {— [ (e (5, 2) + i (v, 2)) dr} +0%(1)
[}

Here, the functions i, psg> pa1s Zg» and Zg have the same meaning as in Section 2; C; and C, are con-
stants, and Q¥ is the particular solution of the nonhomogeneous equation for Q. The last equation is ob~
tained after substitution of (4.6) into the transformed equation (4.3) and after appropriate transformations,
if we consider that the mode of loss of stability is already given. The constants C; and C; are determined
from the initial conditions

Q0,z,M)=0-(0,z,M)=0 (Q*=Q.*=0 for =0

The solution (4.6) thus set up satisfies the boundary conditions (3.4), just as the solution (2.1).

For the determination of the functions pjy(x, 7), uge(T, %), 2y (x, 7}, and Zy(x, 7) the expressions (2.5),
(2.6), (2.11), (2.14), apply, if in the latter, we replace t by 7 (the assumptions with which these expressions
have been obtained are retained)

_a@n . _ e 5Bt e e
1"’12‘— ) s P'zzz—- () lnlzol = TS L s ZO‘—(a—(x, 1:‘)) (4'7)

The derivation of the particular solution Q* of the nonhomogeneous equation of the second order is
obvious, when the fundamental system of solutions of the corresponding homogeneous equation is known[8].

Combining the particular solution and the exponentially increasing and decreasing solutions, after
transformation to the old variables, we obtain a complicated expression which is analogous to the expres-
sion (1.10) of [5]. Thus, we have set up the asymptotic solution of a system with distributed parameters
[see the problems (4.3), (4.4)] as a system with one conditional degree of freedom. Earlier (in Section 2)
the system with distributed parameters was replaced by a system with one slowly varying degree of free-
dom. Then, the same complete system is replaced by a system with one slowly varying degree of freedom,
but on a variable interval. The one degree of freedom being considered can thus be called only conditional,
since one degree of freedom on a variable interval does not agree with the usual notion about a degree of
freedom of a certain oscillatory system.
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The solution thus set up enables us to proceed to the approximation of a system with an infinite num-
ber of degrees of freedom by a system with a finite number of degrees of freedom. However, now, in con~
trast to Section 3, the decisive quantity is the length of the wave of the loss of stability, and not the number
of zeros of the mode of loss of stability. This is connected by the fact that earlier only sufficiently smooth
functions were considered. Generally speaking, the function N(x, t) can be a discontinuous function.

Among the modes of loss of stability which approximate the original system there certainly must be
modes of loss of stability with a local wavelength L = L(x) which corresponds to the maximum of the index
of the exponentially increasing solution (4.6) at any instant of time.

We note that the experimental results from {6, 7] fairly well agree with the solution thus set up, and
namely under constant loading of a homogeneous bar the zeros of the deflection function are only a little
displaced, while the amplitude distribution has an exponential character. For infinitely high velocity of
stress propagation, the bar can be considered as a system with one degree of freedom; here, the maximum
of the exponential index corresponds to this degree of freedom (see Section 2 and [1}).

5. On the Critical Time and the Critical Intensity

of Loading in the Buckling Process of Bars

Above (see Sections 2 and 4), we have carried out an asymptotic analysis of buckling, when a system
with distributed parameters was replaced by a system with one degree of freedom. At each instant of time
under aperiodic intensive loading, we selected the mode of loss of stability which has the highest growth
rate [see (2.1}, (4.6)]. The displacements {the amplitudes of normal deflection) of the system are seen to
be overstated in comparison with those actually taking place. But in such a case, the simple analytical re~
lationships (2.1) and (4.6) can naturally be used to obtain estimates of the critical time and the critical in-
tensity of loading in the buckling process. Here, and this is particularly important, the estimate of this
time and this intensity will be an estimate from below. However, it must be emphasized that the expres-
sions (2.1) and (4.6) were derived with assumption of active loading, i.e., there is only an intensive com~
pressive load acting along the bar.

Under a critical time or a critical intensity of loading, we understand the lower estimate of them, if
the behavior of the entire system at any instant of time (including instants of time after removal of the
load) is determined by the active loading portion.

The critical time t, in the buckling process, or the critical loading intensity n, are determined from
the relationships, in Wthh the chosen decisive quantity is the maximum of the deflection

max |w(z, M, ty)| = w,, max|w(z, N, t)| =w, (6-1)
or the magnification factor (see {3])

max |w(z, M, 3)| max | w (2, Gy, b)]
—malm @] = Y maxler (] e (5.2)

Here, t, is the critical time, t; is a certain fixed instant of time, n, is the critical intensity of load~
ing, w, is the maximum permissible deflection of the elastic system for the given disturbances which take
place under intensive loading, and w, is the critical magnification factor. This factor is the ratio of the
maximum value of the additional deflection at the final instant of time |w(x, n, t}| to the maximum value of .
the initial deflection |wy(x}|; wy&) is a function which characterizes the initial imperfections of the bar.

When using the first expression, the estimates of tix and n, are obtained as the final ones, when an
initial deflection of the bar is absent wy(x) = 0, but certain disturbances during loading are present (for ex-
ample, a small load perpendicular to the axis of the bar). When wy(x) = 0, the second expressions (5.2)
must not be used. Affer certain obvious transformations and a renotation, (5.2) is reduced to (5.1), if
wy (x) # 0. Subsequently, the relationships (5.1) are considered. The criteria proposed follow from the
definition adopted in the engineering theory of stability of motion on a finite time mterval telo,t lorte

[0, tl.

The relationships (56.1) can be considerably simplified, if we bear in mind the order of the quantities
in the relationships (2.1) and (4.6)

N1>1, 20(2, ) = 0(1), 2 (z,7) = 0 (1), Z, (¢, 2) = O(1) (5.3)
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Zo(t,2) =0 (1), pyy (t,2) = O (1), poa (1, 2) = 0 (1)

Therefore, instead of the functions z, Zy, and uyy in the simplified relationships (5.1), we use the
quantities
- . - . 5.4)
Zgo = maxX | 2o (2,81) |, Zog = max | Z, (&, Z) |, Uoe = max | pog (&, 2) i
Here, £; = t, when the velocity of propagation of the longitudinal disturbances is taken as infinite;
£y = 7, when the velocity of propagation of the longitudinal disturbances is finite.

If we use the constants zy, Zy, and us,° instead of the functions in the expressions (2.1) and (4.6), then
the relationships (5.1) as a rule can be solved for the critical parameters t, and n, (it is understood that
in (2.1) and 4.6) max |sin ¢| =1).

We mention the difference between the method proposed here for the determination of critical time
and critical intensity according to the expressions following from the relationships (5.1), and the methods
of [3]. D. L. Anderson and H. E. Lindberg propose to calculate the magnification factor for all modes of
loss of stability, and these modes are chosen, generally speaking, without sufficient justification (see the
expressions (5) and (6) in [3]); then, from the maximum of the magnification factor for certain modes they
propose to judge the behavior of the entire system. Here, however, the mode of loss of stability is chosen
in a special manner —the rate of growth of the deflections is deliberately increased, in order to obtain the
lower estimate for the critical time t, and the critical intensity » « under active loading. In addition, the
practical calculations according to the method proposed are simpler than the calculation of the entire mag-
nification curve. Ina particular case, when the loading is constant, the critical parameters are calculated
particularly simply. In essence, the same results are obtained as in [1], since the mode is selected which
"corresponds to the largest coefficient in the exponential index of the function of time" (see [1], p. 780).

Example. Let the deflections of the bar, when the velocity of propagation of the longitudinal dis-
turbances is taken as infinite, be satisfactorily described by the expression (2.1). Then, bearing in mind
(5.3) and (5.4), we have

g, = lnw, — In €y — In 249 — In Z, (5.5)

Let the difference (In wy—1n Cy) be not close to zero. We drop the second-degree terms from (5.5)
[see (5.3)]. For the critical time t,, and the critical intensity of loading n, , we obtain the simple expres-
sions

_ v, —InG I lInw,—InCiVh (5.6)
* n:p' 22° ] ® T szﬁ) )

The simple relationships (5.6) thus obtained, are very stable in respect to errors which are possible
when determining w, and C;.
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