
ASYMPTOTIC ANALYSIS OF THE BEHAVIOR 

OF AN ELASTIC BAR UNDER APERIODIC INTENSIVE L O A D I N G  

V. M. K o r n e v  UDC624.074.4 

It is established that when aperiodic loads of large intensity act  on an elast ic bar ,  the higher 
modes of stability loss have the highest ra tes  of growth of deflections. A method is indi- 
cated for determining the numbers of these modes,  when the effect of the longitudinal vibra-  
tions on the t r ansverse  vibrations is taken into account and when it is not taken into account.  
A compar ison of the resul ts  obtained with resul ts  of other authors [1-7] is presented.  

1 .  S t a t e m e n t  o f  t h e  P r o b l e m  

The sys tem of equations which takes into account the mutual influence of the longitudinal and t rans-  
verse  vibrations of an inhomogeneous bar  has the form 

(EIw, ~x), x~ + (EFu,x w,x),~ + pFw, tt = f* (x, t) (1.1) 

(EFu, x),: =- pFu, t t 
(i .2) 

Here,  w and u are  the normal and longitudinal displacements of the bar;  x and t a re  the longitudinal 
coordinate and the time; E = E(x) is Young's modulus; I = I(x) and F = F(x) are  the flexural rigidity and the 
c ros s - sec t iona l  area;  p = p(x) is the density of the material~ It is assumed that E(x), I(x), F(x), and p(x) are 
functions which slowly vary  along the length of the wave of loss of stability; while f *  (x, t) is a function 
which is determined by the initial dis turbances or  imperfect ions.  

We consider  a pin-jointed bar  of length 10(0 _< x ~< 10). Let an aperiodic load N(0, t), whose minimum 
value min N(0, t) = N o considerably exceeds the Euler  load Pe for the bar ,  be applied to the bar  at res t ,  for 
t = 0, at the section x = 0. Thus, we study the behavior  of the bar  under intensive loading N0/P e = ~72 >> 1. 
The use of asymptot ic  methods of investigation appears  to be natural for problems of this kind. 

We assume for the time being that the wave process  in the propagation of the longitudinal disturbances 
can be neglected, i .e. ,  the function N(x, t) is given, and this function is sufficiently smooth. Then, Eq. (1.1) 
is rewri t ten  in the form 

(Elw.=),xz + (Nw,x),~ -l- pFw, tt = f* (x, t) 

The initial and boundary conditions for Eq. (1 ~ a re  

(o<~<zo) (1.3) 

w=w,t=O ( t = o ) ,  w = w , = = O  (x=O, Zo) (1.4) 

Before proceeding to an asymptot ic  analysis  of the problem (1.3), (1.4), we introduce the following 
dimensionless pa ramete r s  and est imate the o rder  of the individual t e rms ,  with N0/Pe = ~12 >> 1 

l0 

t~=c*tT, c * =  \T](E*~'/" E* =Tt  I E(x)dx '  
o 
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= To ~. p (z) dx 
0 

Here ,  c*  is the a v e r a g e  ve loc i ty .  In the following the index 1 of  the new v a r i a b l e s  is omi t ted  th rough-  
out.  The r e l a t i onsh i p  (1.3) in t e r m s  of the new v a r i a b l e s ,  if we g r o u p  the s e c o n d - d e g r e e  t e r m s ,  a s s u m e s  
the f o r m  

w , x ~ :  + ~12a (X, t )w ,~  + b (x)w,tt -~ B = / (x, t) (1.5) 

q2a (X, t) Nl~" 9 (x) E*l,~ loft* (x, t) (0 ~ x ~ i} = - - ~ ,  b(x) = ~ ,  l ( x , t ) - ~  El 

Here ,  V >> 1 is a l a r g e  p a r a m e t e r  which c h a r a c t e r i z e s  the in tens i ty  of  loading,  r = r(x) is the rad ius  
of  g y r a t i o n  of the c r o s s  sec t ion  of  the b a r ,  and B denotes  the s e c o n d - d e g r e e  t e r m s  of  the equat ion.  

The ini t ial  and bounda ry  condi t ions  r e t a in  the f o r m  (1.4). 

We e s t i m a t e  the o r d e r  of  the individual  t e r m s  in (1.5), fol lowing [1]. We put 

a(x,  t) = c 1, b(x) ----- c~, B ~___0 

Then, the solut ion of the homogeneous  equat ion  (1.5) can be found where  c 1 and c 2 a r e  c e r t a i n  cons tan t s .  
in the f o r m  

w* ---- A exp (iq9ox d- ~12~%o t) (1.6) 

if we single out one deg ree  of  f r e e d o m  of the s y s t e m  with d i s t r ibu ted  p a r a m e t e r s .  We choose  the deg ree  of 
f r e e d o m  which c o r r e s p o n d s  to the m a x i m u m  of  the exponent ia l  index (see [1]). Consequent ly  

~o ~ = c  1 / 2 ,  ~oo 2 = c  1/4c~ (1.7) 

The cons tan ts  VP0 and ~?2p0 0 c h a r a c t e r i z e  the va r i ab i l i ty  of  the solut ion with r e s p e c t  to the coo rd ina t e s  
x and t .  We note tha t  the so lu t ion  (1.6) has  a d i f fe ren t  o r d e r  of  the de r iva t ives  with r e s p e c t  to x and t r e l a -  
t ive to 

OJu,* OJ~'* TI~JO (w*) (i = t,2, .) (1.8) 
j ~ [ = n~~ (~*)' or--7 = 

2. Asymptotic Analysis o f  a System with One 

Degree of Freedom 

Following the commonly used approaches to asymptotic integration of both ordinary and partial dif- 
ferential equations [8, 9], we seek the solution of the homogeneous equation (1.5), with variable, but weakly 
varying coefficients, in the form 

w = Q (t, x, ~ ) w  (x, t, 0) 

W = z (x, t, ~)exp i f~l~l(x' t )dx  
0 

Q = C1Z (t, x, ~1) exp I [~1~%2 (t, x) + ~l~t (t, x)] dt 
0 

(2.1) 

Here, Vt~i and V2p22 + V#21 are the functions characterizing the variability of the solution with respect 
to x and t, respectively, while z and Z are slowly varying functions, and C i is an arbitrary constant. For 
the function #I (x, t) the basic variable is x, while for the functions P22(t, x) and #21 (t, x) the basic variable is 
t [see (1.6)], i.e., 

0J~tl~[l  1 (/=t,2), 8JD2k ~ 2 ~  (/'=t,2,3,4, k=l,2)  (2.2) 
Ot i O~J 
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The o r d e r  of va r i ab i l i t y  of  the solut ion (2.1) with r e s p e c t  to x and t fo r  an inhomogeneous  b a r  under  
aper iod ic  in tens ive  loading 

~iw 0~w (2.3) 
ozi ~qiO (w), ~ ----- n~-~O (w), j ----- i,2 . . . . .  Vl ~ .  i 

a g r e e s  with the va r i ab i l i ty  of  the solut ion with r e s p e c t  to x o r  t fo r  a homogeneous  b a r  under  cons tan t  load-  
ing [see (1.8)]. 

The a sympto t i c  f o r m  of the so lu t ion  (2.1) is subs t i tu ted  into the homogeneous  equat ion  (1.5). We use 
the inequal i t ies  (2.2) and the r e l a t ions  (2.3). We g roup  the t e r m s  with the c o r r e s p o n d i n g  powers  of  the l a rge  
p a r a m e t e r  ~. For  example ,  c o m p a r i n g  the t e r m s  having  the h ighes t  power  of the l a rge  p a r a m e t e r ,  i .e . ,  
those having ~4, we obtain the fol lowing equat ion:  

~ 4  _ a (x, t )~  2 + b (x)~2~ 2 = 0 (2.4) 

The re l a t ion  (2.4) conta ins  two unknown funct ions Pl and P22. Jus t  as in the de r iva t ion  of the solut ion 
of an equat ion with cons tan t  coef f ic ien ts ,  we s t ipulate  tha t  the funct ion t~l(x, t), fo r  a r b i t r a r y  x and t, r e s u l t s  
in the m a x i m u m  of the e x p r e s s i o n  

ix1 ~ - -  a (x, t)]~l ~ 

Then 

F r o m  (2.4), we have 

~12 = 1/2 a (x, t) (2 .5)  

~22 : a S (x, t) / 4b (x) (2.6)  

It is e a s y  to see that  (2.5) and (2.6) v e r y  much r e m i n d  one of (1.7). 

We now p roc e e d  to de t e rmine  the s lowly va ry ing  funct ion z (x, t, ~) which c h a r a c t e r i z e s  the va r i a t ion  
of  the ampli tude of  the mode of  loss  of  s tabi l i ty  of  the b a r  in the p r o c e s s  of  mot ion.  We put 

z (x, t, ~1) = z 0 (x, t) + ~l-lzl (x, t) -~ ~l-2z~ (x, t) -k ... (2.7) 

In this sec t ion ,  we neglec t  all  t e r m s  excep t  the f i r s t .  

Equat ion (2.5) d e t e r m i n e s  the mode of  loss  of  s tabi l i ty  which i n c r e a s e s  with the g r e a t e s t  rap id i ty .  
Fo r  this mode of  loss  of s tabi l i ty  the equat ion  

W,~x~ -k ~lz~t12 (x, t ) W , ~  -t- B '  = 0 (2.8) 

holds .  

Here ,  B '  a re  the lower  t e r m s  of the equat ion.  

The boundary  condi t ions  a r e  not se t  up fo r  this  equat ion.  We only s t ipula te  that  the function be an al-  
m o s t  pe r iod ic  funct ion 

w (x, t, 0) = zo (x, t)oxv { in i (x, t) } (2.9) 
0 

The second  and four th  de r iva t i ve s  of  the funct ion W (2.9) a re  subs t i tu ted  into (2.8), the t e r m s  with 7?4 
and ~73 a re  equated,  and two equat ions  a r e  obtained.  The f i r s t  of  them is sa t i s f i ed  ident ica l ly ,  while the 
second  a f te r  t r a n s f o r m a t i o n s  a s s u m e s  the f o r m  

dzo 5 ~ .Xdx  (2.10) 
zo 2 ~1 

Equat ion (2.10) is val id  if  in  (2.8), we neglec t  the l ower  t e r m s .  This equat ion,  when  t is a p a r a m e t e r ,  
is i n t eg ra t ed  by q u a d r a t u r e  

x 

5 ~x,x In [ z o [ = - -  ~ -  j---~- dx (2.1,1) 
0 

4 0 0  



Thus, the dis tr ibut ion of ampli tudes  of the chosen mode of loss  of s tabi l i ty  appea r s  as if  depending on 
the local conditions of loading of the e las t ic  construct ion:  the local  r igidi ty and the local  intensi ty of load- 
ing. If pl = pl(x, t), then ~ e  dis t r ibut ion of ampl i tudes  of the rapidly  osci l la t ing function W(x, t, ~) depends 
on the x coordinate  and the instant  of t ime t. 

Now, in the solution (2.1) it remains '  for  us to de te rmine  the fac tor  Zi(x, t, ~), which c h a r a c t e r i z e s  
the var ia t ion  of the growth ra te  of the mode of loss  of s tabi l i ty  a l ready  de te rmined ,  f r o m  point to point dur-  
ing the p roces s  of motion. The s y s t e m  with dis t r ibuted p a r a m e t e r s  is r ep laced  by a s y s t e m  with one de-  
gree  of f r eedom [see (2.9) and (2.1)]. 

The exp re s s ion  (2.1) is subst i tuted into the homogeneous equation (1.5) 

b (t, x)Q n - ll'a (t, x)Q § B* = 0. (2.12) 

Here ,  b(t,  x) and a(t,  x) a r e  sufficiently smooth functions,  ~? >> 1, and B* denotes second-degree  t e r m s .  

Equation (2.12) is an equation of rank 2 (see [8]). After  the usual calcula t ions ,  if  Z(t, x, ~?) is r e p r e -  
sented in the f o r m  of an asympto t ic  s e r i e s  

z (t, x, ,]) = z0 (t, x) § ~-1z1 (t, x) § ,l-~z~ (t, z) § . . .  

for  Q(t, x, ~?) the re la t ionsh ip  

t 

Q (t, x, o) = c ,  { z0 (t, x) exp (t, z) dt + . . .  zo = (b / a)'/, (2.13) 
0 

is valid. 

The express ion  (2.14) appl ies  for Z 0, when B* --- 0 in (2.12). 

Finally,  a f t e r  renotat ion,  we obtain the expres s ion  (2.1) in which the f i r s t  t e r m  behind the in tegra l  
sign c h a r a c t e r i z e s  the rapid  osci l la t ion of the solution along the longitudinal coordinate  (x is the bas ic  
var iable)  while the second t e r m  c h a r a c t e r i z e s  the ra te  of growth of the deflection (t is the bas ic  var iable) ;  
the fac to r s  z 0 (x, t, 77) and Z 0 (t, x, V), r e spec t ive ly  cha rac t e r i ze  the dis t r ibut ion of ampl i tudes  of the mode 
of loss  of s tabi l i ty  and the intensi ty  of growth of this mode,  dependent on the t ime and the longitudinal t o -  
ordinate .  The constant  C1 is chosen f r o m  the nonhomogeneous equation when in the r ight  side we have 
singled out a given f o r m  of loss  of s tabi l i ty .  

We note ce r ta in  spec ia l  f ea tu res  of the solution obtained for  w [see (2.1)]. The function w, genera l ly  
speaking,  does not sa t i s fy  the initial  and boundary conditions (1.4) of the p rob lem under  considera t ion.  The 
init ial  conditions a re  not sa t i s f ied ,  s ince components  cor responding  to the exponential  function with a nega- 
tive index with r e s p e c t  to t ime and a function bounded with r e s p e c t  to V are  absent  f rom w. However ,  for  

>>1 and large  t these components  have a secondary  impor tance .  The boundary conditions f r o m  (1.4) a r e  
not sa t i s f ied ,  because  the function pl is de te rmined  f rom (2.5). We reca l l  that  the solution w is the bas ic  
pa r t  of the solution of a s y s t e m  with one degree  of f r eedom.  In Section 3, where the s y s t e m  with d is t r ibuted 
p a r a m e t e r s  is r ep laced  by a s y s t e m  with s e v e r a l  degrees  of f r eedom,  a more  exact  solution of the p rob lem 
(1.5), (!"4) is p resen ted .  This solution, in con t r a s t  to (2.1), sa t i s f i es  the boundary condit ions.  The solution 
(2.1) obtained he re  c o r r e c t l y  re f lec t s  the quantitat ive pa t te rn  of the phenomenon: the fully de te rmined  
mode of loss  of s tabi l i ty  changes m o s t  rapidly ,  while the mode i t se l f  depends on the t ime .  

3 .  A s y m p t o t i c  A n a l y s i s  o f  a S y s t e m  w i t h  S e v e r a l  

D e g r e e s  o f  F r e e d o m  

The exp re s s ion  (2.1) obtained above for  the bas ic  pa r t  of the solution of a s y s t e m  with one degree  of 
f r eedom,  allows us to p roceed  to the approx imat ion  of a s y s t e m  with dis t r ibuted p a r a m e t e r s  by a s y s t e m  
with s eve ra l  degrees  of f r eedom,  and namely ,  the number  of sign changes of the osci l la t ing component  of 
the solution 

sin (~l S ~t~(x, t~ t 
0 

at a fixed instant  t ~ indicates  the number  in m(t  ~ of the mode of loss  of s tabi l i ty  which mos t  in tensively  grows 
at t = t ~ When t is var ied ,  we obtain a ce r t a in  function re(t). 
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Let the function m(t) for 0 _< t _< to (to is a cer tain constant) run through the integer values ml, m 2, 
. . . .  m k (k ~- 1). These integer values are the numbers of the modes of loss of stabili ty which most  inten- 
sively grow at cer ta in  instances of t ime. Therefore ,  for the approximation of the sys tem with distributed 
pa rame te r s ,  we choose modes of loss of stability Wm(x), and the solution of the problem (1.5), (1.4) is 
r epresen ted  in the form 

k 

w = ~ ,  qm(t)  W m ( x ) ,  m = re( l )  (k >~ l) 
(3.1) 

Here,  m is an integer function of an integer argument  j, i .e.,  m = re(j) for j = 1, 2 . . . . .  k, and W(x) 
are  cer ta in  averaged modes of loss of stabili ty.  These modes are  asymptot ic  representa t ions  of solutions 
of the following problem concerned with eigenfunctions and eigenvalues (we recal l  that ~ ~ V2 is a large 
parameter ) :  

W . . . . .  + Xa* (x) W , ~  + B ~ -= O, W = W , ~  = 0 (~= o, 1) (3.2) 

t~ ' I  a*(x)= w a(x, t) dt 
0 

Here,  B ~ denotes the lower t e rms  of the equation. The boundary conditions of the problem (3.2) may 
have in  fact a more  complex form.  

After the selection of the appropriate  degrees of f reedom (modes of loss of stability), we proceed to 
the determinat ion of the amplitudes qm" The express ion  (3.1) is substituted into Eq. (1.5) and the initial 
conditions (1.4); the Bubnov--Galerkin procedure is used. For qm'  we obtain the Cauchy problem for the 
following sys tems  of ord inary  differential equations 

~t 

q~"--~14~ c~,,qi+ B m ----/~, q, ,(0)= q,~'J0]----0 
i = l  

Cam " ~  tim fo r  i = #  r a ,  m = m (] )  (i, / ----- t ,  2 . . . . .  k) ( 3 . 3 )  

2 Here,  Bm denotes second-degree  te rms;  their  relative o rder  is not g rea t e r  than two, i.e., Bm ~ ~? 
[see (2.2)]. The second-degree  t e rms  have such an o rde r  when the cha rac te r  of loading and the stiffness 
charac te r i s t i c s  of the bar  vary  but a little. In the sys tem (3.3) each m equation contains within the higher 
t e rms  only one derivative of the second o rde r  qm"" This is a consequence of the simple boundary conditions 
of the problem (3.2). If the boundary conditions for the equation of the problem (3.2) differ f rom the con- 
ditions 

W = W , x : ~ = O  or W , ~ = W  ..... = 0  (~=0,t) (3.4) 

then, a sys tem which is analogous to (3.3) has the form 

k 

if, j = l ,  2 . . . . .  k) (3.5) 

c;,,m>~'cim for i=/=m;c~,n~c*~,n for i~=m, m ~ l  

We note that the sys tem (3.5) is t r ans formed  into a decoupled sys tem,  when a homogeneous bar  under 
constant  load is being considered,  if the boundary conditions have the form (3.4). 

The sys tems  (3.3) and (3.5) with variable coefficients contain the natural large pa ramete r  V. The 
solution of the homogeneous sy s t em of ordinary  differential equations (3.3) or  (3.5) of rank 2 [8] (the high- 
es t  power of the large pa rame te r  is 4) is sought in the form of an asymptotic  se r i e s .  For example,  for 
one of the par t icu lar  solutions of these homogeneous sys tems the representa t ion  

t 

.q.~ = Z,~ exp ~ [~12lx~ (t) + ~l~t~ (t)] dt, Zm = ,Zo.~.(t) + ~-~Z~m (t) --}- . .  (3.6) 
0 

is valid. 
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In deriving the solution of the nonhomogeneous system of equations, we use the general method of 

varying the arbitrary constants. 

The representation of the solution of the system (3.4) in the form (3.6) is valid, if for a variation of t 
in the time interval being considered (0 _< t _< t 0) not a single root of the "characteristic polynomial" cor- 
responding to the system (3 ~ becomes zero, or the intensity of loading does not vary very much. The coin- 
ciding veal roots of the characteristic polynomial corresponding to (3.3) do not give rise to complications, 
since the matrix c = II CimH has simple elementary divisors, and, consequently, the form of the asymptotic 
representation of the solution (3.6) is retained (see [8]). Not one of the roots of the characteristic poly- 
nomial corresponding to (3.3) becomes zero, if the functions Cram do not change sign, i.e., Cmm(t) > 0 for 
0_<t_<t0. 

For a considerable change in the intensity of loading Cmm(t~m) = 0 for 0 _< t~n m _< t 0. In this case, 
we have to bear in mind the turning points (a certain one of the functions qm may be transformed from an 
exponentially increasing function into an oscillating function; for example, the exponential index is greater �9 
than zero for t < tram, the exponential index is a purely imaginary function for t > t~nm). In the presence 
of turning points the problem of constructing "through" asymptotic forms arises. 

Example. We consider a homogeneous bar under nonuniform longitudinal loading. Let in (1.5) 

a ~-2(I  § a:)2, b,= b o = colst,, a =  coast, B ~ 0 0 ~ < x ~ <  i) 

Then in the  e x p r e s s i o n  (2.1) the funct ions  ~1, #22, Zo, and Z 0 have the f o r m  

t . Zo (b0 / 2) 'h  
(~ + ~x)!/s 

It is obvious  that ,  dependent  on the quan t i ty  ~, the osc i l l a t i on  of  the solut ion with r e s p e c t  to the longi-  
tudinal  coo rd ina t e ,  the ra te  of  growth  of  the def lec t ion  and the d i s t r ibu t ion  of  ampl i tudes  can  v a r y  subs tan-  
t ia l ly .  

4 .  B u c k l i n g  o f  a I n h o m o g e n e o u s  B a r  u n d e r  a n  I m p a c t  

( " O n e  Tv D e g r e e  o f  F r e e d o m )  

In the p reced ing  two sec t ions ,  We s tudied the b e h a v i o r  of the b a r  with the a s s u m p t i o n  that  the ve loc i ty  
of  p ropaga t ion  of the d i s tu rbance  a long the x axis  is infini te .  We drop  this a s sumpt ion .  Le t  a t  t = 0 an  in- 
tens ive  load N(0, t) be appl ied  to b a r  a t  the sec t ion  x = 0, ioeo, 

N - - - - N ( O , t ) ,  x = 0 ,  t ~ 0  (4.1) 

He re ,  N(0, t) is a suf f ic ient ly  smoo th  function~ 

The p r o b l e m s  (1.2) and (4.1) a r e  p r o b l e m s  c o n c e r n e d  with the p ropaga t ion  of the bounda ry  ef fec ts  (0 _< 
x _< 1). The r e f l ec t i on  f r o m  the suppor t  x = 1 for  the t ime being is not c o n s i d e r e d .  It is a s s u m e d  that  the 
solut ion of  this  p r o b l e m  for  the wave equat ion  (1.2) has  a l r e ady  been  obta ined by some method.  Thus ,  we 
know the c o m p r e s s i v e  fo rce  N0(x, t) and we know the ve loc i ty  c(t) (c(x)), with which the f ront  of  the fo rce  is 
d i sp l aced  along the b a r  

! 

N o (x, t) = N (x, t) (x<l (t)), N O (x, t) ~ 0 (r >/1 (t)), l (t) = S c (~) d E (4.2) 
0 

Here, c is a dimensionless velocity for an inhomogeneous bar. 

We note that the function N0(x, t) has a Complicated form; for x =l, this function is discontinuous: 
N0(l--z, t) ~ N0(/ + e, t) (~ > 0 is a small positive quantity). 

As we know, the bending disturbances given by Eq. (I.1) for x > /(t) are not significant. In addition,~ 
with a more exact formulation of the problem we obtain equations of the type of the dynamic equations of 
the Timoshenko beam. From these equations it follows that the velocity of propagation of the bending dis- 
turbances c .  (t) is finite and less than c(t) for any instant of time [c, (t) < c(t)]. Therefore, the study of the 
equation 
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w .. . . . .  q- q2a (~, t) w,~ x q- b (x) w,,t + B = ] (x, t) 

is conducted on a variable interval [4], 0 _< x _</(t), just as in [5] (for notation see Section 1). 
and boundary conditions for Eq. (4.3) are 

w = w , ~ = O ( t = O ) , w = w , ~ = O ( x = O ) , w = w , . = O ( . = z ( O )  

Let a(x, t) and b(x) be functions which only slightly vary  along the wave of loss  of stabili ty.  

We introduce the coordinate t ransformat ion  [5] 

(4.3) 

The initial 

(4.4) 

x = x ,  T = t  c - ~  
0 

(4.5) 

Here ,  7 is the true time of act ion of the compress ive  force of high intensity. 

Equation (4.3) in t e rms  of the new variables  p reserves  its form (t is replaced by T), if we neglect 
the second-degree  t e rms .  An est imate  of these second-degree  t e rms  for a homogeneous ba r  is presented 
in Section 1 of [5]. In the case being considered,  the principal complications in their  es t imat ion do not 
a r i se  for an inhomogeneous bar  with smoothly varying rigidity.  The second-degree  t e rms  can be neglected, 
if max r(x)/min L(X) << 1 (here x, r and L are  quantities with dimensions;  L is the length of the wave of loss 
of stabili ty 

The solution of the t r ans fo rmed  equation (4.3) is found in the form 

w = Q (% x, ~)W (x, ~, n) (4.6) 

x 

w =   ),xp j'o  )ex, Q = x)o p{! 

0 

Here,  the functions Pl, #22, #21, Zo, and Z 0 have the same meaning as in Section 2; Cl and C 2 are con- 
stants,  and Q* is the par t icular  solution of the nonhomogeneous equation for Q. The last  equation is ob -  
tained af ter  substitution of (4.6) into the t ransformed equation (4.3) and af ter  appropriate  t ransformat ions ,  
if we consider  that the mode of loss of stabil i ty is a l ready given. The constants C1 and C 2 are  determined 
f rom the initial conditions 

Q (o, x, n) ffi Q,-. ( o , . ,  n)  = o (q*  ffi q . . *  = o fo~ �9 = o) 

The solution (4.6) thus set  up satisfies the boundary conditions (3.4), just  as the solution (2.1). 

For  the determinat ion of the functions gl(x, ~'), #22( ~-, x), z0(x, ~'), and Z0(x, 7) the express ions  (2.5), 
(2.6), (2.11), (2.14), apply, if in the la t ter ,  we replace t by 7 (the assumptions with which these express ions  
have been obtained are  retained) 

~*,x d* Z o (4.7) 11'2 = ~ '  P'~22 ~--- 4b (x-----'~' In [ z o I = - -  -~-  ~ ,  = \7(.--.'-~-] 
0 

The derivation of the par t icular  solution Q* of the nonhomogeneous equation of the second o rde r  is 
obvious, when the fundamental sys t em of solutions of the corresponding homogeneous equation is known [8]. 

Combining the par t icular  solution and the exponentially increasing and decreasing solutions, a f ter  
t ransformat ion  to the old var iables ,  we obtain a complicated express ion which is analogous to the expres-  
sion (1.10) of [5]. Thus, we have set  up the asymptot ic  solution of a sys tem with distributed paramete r s  
[see the problems (4.3), (4.4)] as a sys t em with one conditional degree of f reedom. Ear l i e r  (in Section 2) 
the sys tem with distributed pa ramete r s  was replaced by a sys tem with one slowly varying degree of f ree-  
dom. Then, the same complete sys tem is replaced by a sys tem with one slowly varying degree of f reedom, 
but on a variable interval .  The one degree of freedom being considered can thus be called only conditional, 
since one degree of f reedom on a variable interval does not agree with the usual notion about a degree of 
f reedom of a cer ta in  osc i l la tory  sys tem.  
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The solution thus set up enables us to proceed to the approximation of a system with an infinite num- 
ber of degrees of freedom by a system with a finite number of degrees of freedom. However, now, in con- 

trast to Section 3, the decisive quantity is the length of the wave of the loss of stability, and not the number 
of zeros of the mode of loss of stability. This is connected by the fact that earlier only sufficiently smooth 
functions were considered~ Generally speaking, the function N(x, t) can be a discontinuous function. 

Among the modes of loss of stability which approximate the original system there certainly must be 
modes of loss of stability with a local wavelength L = L(x) which corresponds to the maximum of the index 
of the exponentially increasing solution (4.6) at any instant of time. 

We note that the experimental results from [6, 7] fairly well agree with the solution thus set up, and 
namely under constant loading Of a homogeneous bar the zeros of the deflection function are only a little 
displaced, while the amplitude distribution has an exponential character. For infinitely high velocity of 
stress propagation, the bar can be considered as a system with one degree of freedom; here, the maximum 
of the exponential index corresponds to this degree of freedom (see Section 2 and [I])~ 

5. On the Critical Time and the Critical Intensity 

of Loading in the Buckling Process of Bars 

Above (see Sections 2 and 4), we have carried out an asymptotic analysis of buckling, when a system 
with distributed parameters was replaced by a system with one degree of freedom. At each instant of time 
under aperiodic intensive loading, we selected the mode of loss of stability which has the highest growth 
rate [see (2.1), (4.6)]. The displacements (the amplitudes of normal deflection) of the system are seen to 
be overstated in comparison with those actually taking place. But in such a case, the simple analytical re- 
lationships (2.1) and (4.6) can naturally be used to obtain estimates of the critical time and the critical in- 
tensity of loading in the buckling process. Here, and this is particularly important, the estimate of this 
time and this intensity will be an estimate from below. However, it must be emphasized that the expres- 
sions (2.1) and (4.6) were derived with assumption of active loading, i.e., there is only an intensive com- 
pressive load acting along the bar. 

Under a critical time or a critical intensity of loading, we understand the lower estimate of them, if 
the behavior of the entire system at any instant of time (including instants of time after removal of the 
load) is determined by the active loading portion. 

The critical time t. in the buckling process, or the critical loading intensity ~?, are determined from 
the relationships, in which the chosen decisive quantity is the maximurn of the deflection 

max]w (x, ~1, t,)l = w,, max [w (x, ~l,, to)[ = w. (5 ol) 

o r  the magni f i ca t ion  f ac to r  (see [3]) 

max I tv (x, ~, t,) I max I w (x, ~1,, to)l (5.2) 
maxl wo(x)l = w~,, max I wo(z) I = w , ,  

He re ,  t .  is the c r i t i c a l  t ime ,  to is a c e r t a i n  fixed ins tan t  of t ime ,  V. is the c r i t i c a l  in tens i ty  of  load-  
ing, w .  is the m a x i m u m  p e r m i s s i b l e  def lec t ion  of  the e l a s t i c  s y s t e m  fo r  the g iven d i s t u rbances  which take 
place unde r  in tensive  loading,  and w** is the Cri t ical  magn i f i ca t ion  f ac to r .  This f ac to r  is the ra t io  of  the 
m a x i m u m  value of  the addi t ional  def lec t ion  a t  the final ins tan t  of  t ime lw(x, V, t) I t e  the m a x i m u m  value of  
the ini t ia l  def lec t ion  Iw0(x) I; w0(x) is a funct ion which c h a r a c t e r i z e s  the ini t ia l  i m p e r f e c t i o n s  of the b a r .  

When using the f i r s t  e x p r e s s i o n ,  the e s t i m a t e s  of  t .  and V. a r e  obtained as the final ones,  when an 
ini t ia l  def lec t ion  of  the b a r  is ab sen t  w 0 (x) -= 0, but  c e r t a i n  d i s t u rbances  dur ing  loading a r e  p r e s e n t  (for ex-  
ample ,  a s m a l l  load p e r p e n d i c u l a r  to the axis  of  the ba r ) .  When w0(x) -= 0, the second  e x p r e s s i o n s  (5.2) 
m u s t  not be used.  Af te r  c e r t a i n  obvious  t r a n s f o r m a t i o n s  and a reno ta t ion ,  (5.2) is r educed  to (5.1), if 
w 0 (x) ~ 0. Subsequent ly ,  the r e l a t i onsh ips  (5.1) a r e  cons ide r ed .  The c r i t e r i a  p roposed  follow f r o m  the 
def ini t ion adopted in the eng inee r ing  t heo ry  of  s tab i l i ty  of  mot ion on a finite t ime in te rva l  t 6 [0, t . ]  o r  t 6 
[0, to]. 

The r e l a t ionsh ips  (5.1) can be c o n s i d e r a b l y  s impl i f ied ,  if we b e a r  in mind the o r d e r  of the quant i t ies  
in the r e l a t i onsh ips  (2.1) and (4.6) 

~1 > >  1, Zo (x, t) = 0 (t),  Zo (x, ~) = 0 (1), Zo (t, x) = o ( t )  (5.3) 
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Zo (% x) = o 0),  ~,~ (t, z)  = o ( i ) ,  ~ (-~, x) = o (1) 

There fo re ,  instead of the functions z o, Z o, and P22 in the s impl i f ied  re la t ionships  (5.1), we use the 
quanti t ies 

(5.4) o 

zo0---- max I z o(x,~l) I, Zoo = max I Z o(~l,x) l, ~t22 = max I ~t22(~l,x)] 

He re ,  }l = t, when the Velocity of propagat ion  of the longitudinal d is turbances  is taken as infinite; 
}1 = T, when the veloci ty of propagat ion of the longitudinal d is turbances  is  finite. 

If we use the constants  z o, Zoo, and P22 ~ ins tead of the functions in the expres s ions  (2.1) and (4.6), then 
the re la t ionships  (5.1) as a rule can be solved for  the c r i t i ca l  p a r a m e t e r s  t ,  and 7 .  (it is understood that 
in (2.1) and (4.6) max ]sin ~ [ = i). 

We mention the difference between the method proposed here  for  the de te rmina t ion  of c r i t i ca l  t ime 
and c r i t i ca l  intensi ty  according  to the expres s ions  following f r o m  the re la t ionships  (5.1), and the methods 
of [3]. D. L. Anderson and H. E. Lindberg propose  to calculate the magnif icat ion fac tor  for  all  modes  of 
loss  of s tabi l i ty ,  and these modes a r e  chosen,  genera l ly  speaking,  without sufficient  just i f icat ion (see the 
expres s ions  (5) and (6) in [3]); then, f r o m  the m a x i m u m  of the magnif icat ion fac tor  for  ce r ta in  modes they 
propose  to judge the behavior  of the ent i re  sys t em.  Here ,  however ,  the mode of loss  of s tabi l i ty  is chosen 
in a spec ia l  m a n n e r - - t h e  r a t e  of growth of the deflect ions is de l ibera te ly  inc reased ,  in o r d e r  to obtain the 
lower  e s t ima te  for  the c r i t i ca l  t ime t .  and the c r i t i ca l  intensi ty 7 .  under act ive loading. In addition, the 
p rac t ica l  calculat ions according  to the method proposed a re  s imp le r  than the calculat ion of the ent i re  mag-  
nification curve .  In a pa r t i cu la r  case ,  when the loading is constant,  the c r i t i ca l  p a r a m e t e r s  a re  calculated 
pa r t i cu la r ly  s imply .  In e ssence ,  the same  re su l t s  a r e  obtained as  in [1], since the mode is se lec ted  which 
"cor responds  to the l a r g e s t  coeff icient  in the exponential  index of the function of t ime"  (see [1], p. 780). 

Example .  Let  the deflect ions of the ba r ,  when the veloci ty  of propagat ion of the longitudinal dis-  
turbances  is taken as infinite, be sa t i s fac to r i ly  descr ibed  by the express ion  (2.1)o ~3aen, bear ing  in mind 
(5.3) and (5.4), we have 

~12t l~  = In  w ,  - -  In C1 - -  In  Zoo - -  In Zoo  ( 5 . 5 )  

Let  the difference (In w , - - l n  Ci) be not close to zero .  We drop the second-degree  t e r m s  f rom (5.5) 
[see (5.3)]. For  the c r i t i ca l  t ime t , ,  and the c r i t i ca l  intensi ty  of loading ~ , ,  we obtain the s imple  ex p re s -  
sions 

In w ,  - -  In c~ / ]n w ,  - -  In C, y / ,  ( 5 . 6 )  
p,,,~ ] 

The s imple  re la t ionships  (5.6) thus obtained, a re  ve ry  stable in r e s p e c t  to e r r o r s  which a re  possible  
when determining w .  and Ct. 
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